Беговая дорожка

Количественные критерии путей ресинтеза атф. Биоэнергетика мышечной деятельности Ресинтез энергии

Количественные критерии путей ресинтеза атф. Биоэнергетика мышечной деятельности Ресинтез энергии

Тканевое дыхание - это основной способ получения АТФ, используемый всеми клетками организма (кроме красных клеток крови).

В процессе тканевого дыхания от окисляемого вещества отнимаются два атома водорода (два протона и два электрона) и по дыхательной цепи, состоящей из ферментов и коферментов, передаются на молекулярный водород - О 2 , доставляемый кровью из воздуха во все ткани организма. В результате присоединения атомов водорода к кислороду образуется вода. За счет энергии, выделяющейся при движении электронов по дыхательной цепи, в митохондриях осуществляется синтез АТФ из АДФ и фосфорной кислоты. Обычно образование одной молекулы воды сопровождается синтезом трех молекул АТФ.

В упрощенном виде тканевое дыхание может быть представлено следующей схемой.

В качестве субстратов окисления (т.е. веществ, от которых отнимается водород) в тканевом дыхании используются разнообразные промежуточные продукты распада белков, углеводов и жиров. Однако наиболее часто окислению подвергаются промежуточные продукты цикла трикарбоновых кислот (ЦТК) - цикла Кребса (изолимонная, кетоглутаровая, янтарная и яблочная кислоты). Цикл Кребса - это завершающий этап катаболизма, в ходе которого происходит окисление остатка уксусной кислоты, входящей в ацетилкофермент А - это универсальный метаболит организма, в который при своем распаде превращаются главные органические вещества - белки, углеводы и жиры.

В некоторых случаях отнятие атомов водорода от окисляемых веществ происходит в цитоплазме и здесь же отщепленный водород присоединяется не к кислороду (как в случае тканевого дыхания), а к какому-то другому веществу. Наиболее часто таким акцептором водорода является пировиноградная кислота, возникающая при распаде углеводов и аминокислот. В результате присоединения атомов водорода пировиноградная кислота превращается в молочную кислоту (лактат). Таким образом, при данном типе окисления вместо конечного продукта - воды - образуется другой конечный продукт - молочная кислота, причем это происходит без потребления кислорода, т.е. анаэробно. За счет выделяющейся при этом энергии в цитоплазме осуществляется синтез АТФ, который получил название анаэробное, или субстратное фосфорилирование, или же анаэробный синтез АТФ. Биологическое назначение данного типа окисления - получение АТФ без участия тканевого дыхания и кислорода.

Мышечное сокращение является сложным механохимическим процессом, в ходе которого происходит преобразование химической энергии гидролитического расщепления АТФ в механическую работу, совершаемую мышцей.

Процесс мышечного расслабления, или релаксация, так же как и процесс мышечного сокращения, осуществляется с использованием энергии гидролизата АТФ. Обе фазы мышечной деятельности - сокращение и расслабление - протекают при обязательном использовании энергии, которая выделяется при гидролизате АТФ.

Однако запасы АТФ в мышечных клетках незначительны (в покое концентрация АТФ в мышцах около 5 ммоль/л) и их достаточно для мышечной работы в течение 1-2 с. Поэтому для обеспечения более продолжительной мышечной деятельности в мышцах должно происходить пополнение запасов АТФ. Образование АТФ в мышечных клетках непосредственно во время физической работы называется ресинтезом АТФ и идет с потреблением энергии. В зависимости от источника энергии выделяют несколько путей ресинтеза АТФ.

Для количественной характеристики различных путей ресинтеза АТФ обычно используются следующие критерии:

Максимальная мощность, или максимальная скорость, - это наибольшее количество АТФ, которое может образоваться в единицу времени за счет данного пути ресинтеза. Измеряется максимальная мощность в калориях или джоулях, исходя из того, что 1 ммоль АТФ (506 мг) соответствует в физиологических условиях примерно 12 кал или 50 Дж (1 кал = 4,18 Дж). Поэтому данный критерий имеет размерность кал/мин кг мышечной ткани или соответственно Дж/мин кг мышечной ткани;

Время развертывания - это минимальное время, необходимое для выхода ресинтеза АТФ на свою наибольшую скорость, т.е. для достижения максимальной мощности. Этот критерий измеряется в единицах времени (с, мин);

Время сохранения или подержания максимальной мощности - это наибольшее время функционирования данного пути ресинтеза АТФ с максимальной мощностью. Единицы измерения - с, мин, ч;

Метаболическая емкость - это общее количество АТФ, которое может образоваться во время мышечной работы за счет данного пути ресинтеза АТФ.

В зависимости от потребления кислорода пути ресинтеза делятся на аэробные и анаэробные /24/.

Аэробный путь ресинтеза АТФ

(синонимы: тканевое дыхание, аэробное или окислительное фосфорилирование) - это основной, базовый способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода (два протона и два электрона) и по дыхательной цепи передаются на Молекулярный кислород - О 2 , доставляемый кровью в мышцы из воздуха, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ. В свою очередь, ацетил - КоА может образовываться из углеводов, жиров и аминокислот, т.е. через ацетил - КоА в цикл Кребса вовлекаются углеводы, жиры и аминокислоты.

Скорость аэробного пути ресинтеза АТФ контролируется содержанием в мышечных клетках АДФ, который является активатором ферментом тканевого дыхания. В состоянии покоя, когда в клетках почти нет АДФ, тканевое дыхание протекает с очень низкой скоростью. При мышечной работе за счет интенсивного использования АТФ происходит образование и накопление АДФ. Появившийся избыток АДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности.

Другим активатором аэробного пути ресинтеза АТФ является СО. Возникающий при физической работе в избытке углекислый газ активизирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышц кислородом.

Аэробный путь образования АТФ характеризуется следующими критериями:

Максимальная мощность (составляет 350-450 кал/мин кг);

Время развертывания (3-4 минуты, у хорошо тренированных спортсменов может быть около 1 мин.);

Время работы с максимальной мощностью (составляет десятки минут).

Как уже указывалось, источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Кребса. Причем для этой цели используются не только внутримышечные запасы данных веществ, но и углеводы, жиры кетоновые тела и аминокислоты, доставляемые кровью в мышцы во время физической работы. В связи с этим данный путь ресинтеза АТФ функционирует с максимальной мощностью течение такого продолжительного времени.

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный ресинтез имеет ряд преимуществ. Он отличается высокой экономичностью: в ходе этого процесса идет глубокий распад окисляемых веществ до конечных продуктов - СО и НО и поэтому выделяется большое количество энергии. Другим достоинством этого пути ресинтеза является универсальность в использовании субстратов. В ходе аэробного ресинтеза АТФ окисляются все основные органические вещества организма: аминокислоты (белки), углеводы, жирные кислоты, кетоновые тела и др. Еще одним преимуществом этого способа образования АТФ является очень большая продолжительность его работы: практически он функционирует постоянно в течение всей жизни.

Однако аэробный способ образования АТФ имеет и ряд недостатков, Функциональное состояние кардиореспираторной системы является лимитирующим фактором, ограничивающим продолжительность работы аэробного пути ресинтеза АТФ с максимальной мощностью и величину самой максимальной мощности. Возможности аэробного пути ограничены еще и тем, что все ферменты тканевого дыхания встроены во внутреннюю мембрану митохондрий в форме дыхательных ансамблей и функционируют только при наличии неповрежденной мембраны. Любые факторы, влияющие на состояние и свойства мембран, нарушают образование АТФ аэробным способом. Например, нарушения окислительного фосфорилирования наблюдаются при ацидозе (повышение кислотности), набухании митохондрий, при развитии в мышечных клетках процессов свободно радикального окисления липидов, входящих в состав мембран митохондрий.

Еще одним недостатком аэробного образования АТФ можно считать большое время развертывания (3-4 мин.) и небольшую по абсолютной величине максимальную мощность /24/.

Анаэробные пути ресинтеза АТФ

Анаэробные пути ресинтеза АТФ (креатинфосфатный, гликолитинический) являются дополнительными способами образования АТФ в тех случаях, когда основной путь получения АТФ - аэробный - не может обеспечить мышечную деятельность необходимым количеством энергии. Это бывает на первых минутах любой работы, когда тканевое дыхание еще полностью не развернулось, а также при выполнении физических нагрузок высокой мощности.

Креатинфосфатный путь ресинтеза АТФ

(креатинкиназный, алактатный)

В мышечных клетках всегда имеется креатинфосфат - соединение, содержащее фосфатную группу, связанную с остатком креатина макроэргической связью. Содержание креатинфосфата в мышцах в покое - 15-20 ммоль/кг.

Креатинфосфат обладает большим запасом энергии и высоким сродством к АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате гидролиза АТФ.

Креатинфосфатная реакция обратима, но ее равновесие смещено в сторону образования АТФ, и поэтому она начинает осуществляться сразу же, как только в миоцитаз появляются первые порции АДФ. Эта реакция катализируется ферментом креатинкиназой. При мышечной работе активность креатикиназы значительно возрастает за счет активирующего воздействия на нее ионов кальция, креатина, образующегося в ходе данной реакции. За счет этих механизмов активность креатинкиназы в начале мышечной работы резко увеличивается и кеатинфосфатная реакция очень быстро достигает максимальной скорости.

Креатинфосфат, обладая большим запасом химической энергии, является веществом непрочным. От него легко может отщепляться фосфорная кислота, в результате чего происходит циклизация остаток креатина, приводящая к образованию креатина.

Образование креатина происходит без участия ферментов, спонтанно, Эта реакция необратима. Образовавшийся креатинин в организме не используется и выводится с мочой.

Синтез креатинфосфата в мышечных клетках происходит во время отдыха путем взаимодействия креатина с избытком АТФ. Частично запасы креатинфосфата могут восстанавливаться и при мышечной работе умеренной мощности, при которой АТФ синтезируется за счет тканевого дыхания в таком количестве, которого хватает и на обеспечение сократительной функции миоцитов, и на восполнение засов креатифосфата. Поэтому во время выполнения физической работы креатинфосфатная реакция может включаться многократно. Образование креатина происходит в печени использованием тех аминокислот: глицина, метионина и аргинина.

Креатинфосфатный путь синтеза АТФ характеризуется следующими величинами принятых количественных критериев:

Максимальная мощность (составляет 900-1100 кал/мин кг);

Время развертывания (всего 1-2 с);

Время работы с максимальной скоростью (всего лишь 8-10 с).

Главными преимуществами креатинфосфатного пути образования АТФ являются очень малое время развертывания и высокая мощность, что имеет крайне важное значение для скоростно-силовых видов спорта. Главным недостатком этого способа синтеза АТФ, существенно ограничивающим его возможности, является короткое время его функционирования. Время поддержания максимальной скорости всего 8-10 с, к концу его скорость снижается вдвое, а к концу 3-й минуты интенсивной работы креатинфосфатная реакция в мышцах практически прекращается.

Биохимическая оценка состояния креатинфосфатного пути ресинтеза АТФ обычно проводится по двум показателям: креатининовому коэффициенту и алактатному кислородному долгу.

Креатининовый коэффициент характеризует запасы креатинфосфата в мышцах, так как между содержанием креатинфосфата и образованием его из креатинина существует линейная зависимость, поскольку это превращение протекает неферментативным путем и является необратимым.

Алактатный кислородный долг - это повышение (сверх уровня покоя) потребление кислорода в ближайшие 4-5 мин после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. Таким образом, использование креатинфосфата во время работы приводит к накоплению креатина, превращение которого снова в креатинфосфат требует определенного количества кислорода.

Гликолитический путь ресинтеза АТФ (гликолиз)

Гликолиз так же является анаэробным способом образования АТФ. Источником энергии, необходимой для ресисинтеза АТФ является мышечный гликоген. При анаэробном распаде гликоген под воздействием фермента фосфорилазы через ряд последовательных стадий превращается в молочную кислоту. В процессе гликолиза образуются промежуточные продукты, содержащие фосфатную группу с макроэргической связью, которая легко переносится на АДФ с образованием АТФ.

Все ферменты гликолиза находятся в саркоплазме мышечных клеток. Гликолизу может также подвергаться глюкоза, поступающая в мышцы из кровяного русла.

Ферменты фосфорилаза и фосфофруктокиназа регулируют скорость гликолиза. Причем в покое гликолиз протекает очень медленно, при интенсивной мышечной работе его скорость резко возрастает и может увеличиваться по сравнению с уровнем покоя почти в 2000 раз, причем повышение скорости гликолиза может наблюдаться уже в предстартовом состоянии за счет выделения адреналина.

Максимальная мощность - 750-850 кал/мин кг.

Время развертывания - 20-30 с.

Время работы с максимальной мощностью - 2-3 мин.

Преимущества гликолиза перед аэробным путем образования АТФ: быстрее выходит на максимальную мощность, протекает с высокой скоростью, имеет более высокую величину максимальной мощности и не требует участия в процессе митохондрий и кислорода.

Недостатки гликолиза: высокая скорость протекания процесса быстро приводит к уменьшению в мышцах концентрации гликогена, а накопление в процессе гликолиза молочной кислоты приводит к повышению кислотности внутри мышечных клеток, что снижает каталитическую активность ферментов гликолиза; гликолиз малоэкономичен. Повышение концентрации лактата в мышечных волокнах вызывает сдвиг pH в кислую сторону, при этом проходят конформационные изменения мышечных белков, приводящие к снижению их функциональной активности, т.е. ведет к развитию утомления.

При снижении интенсивности физической работы, а также в промежутках отдыха во время тренировки образовавшийся лактат может частично выходить из мышечных клеток в лимфу и кровь, что делает возможным повторное включение гликолиза.

Зоны относительной мощности мышечной работы

В настоящее время приняты различные классификации мощности мышечной деятельности. Одна из них - классификация по В.С.Фарфелю, базирующаяся на положении о том, что мощность выполняемой физической нагрузки обусловлена соотношением между тремя основными путями ресинтеза АТФ, функционирующими в мышцах во время работы. Согласно этой классификации выделяют четыре зоны относительной мощности мышечной работы: максимальной, субмаксимальной, большой и умеренной.

Работа в зоне максимальной мощности может продолжаться в течение 15-20 с. Основной источник АТФ в этих условиях - креатин-фосфат. Только в конце работы креатинфосфатная реакция замещается гликолизом.

Работа в зоне субмаксимальной мощности имеет продолжительность до 5 мин. Ведущий механизм ресинтенза АТФ - гликолитический. В начале работы, пока гликолиз не достиг максимальной скорости, образование АТФ идет за счет креатинфосфата, а в конце работы гликолиз начинает заменяться тканевым дыханием. Работа в зоне субмаксимальной мощности характеризуется самым большим кислородным долгом.

Работа в зоне большой мощности имеет продолжительность до 30мин. Для работы в этой зоне характерен примерно одинаковый вклад гликолиза и тканевого дыхания. Креатинфосфатный путь ресинтеза АТФ функционирует только в самом начале.

Работа в зоне умеренной мощности продолжается свыше 30мин. Энергообесечение мышечной деятельности происходит преимущественно аэробным путем /24/.

АТФ и мышечная работа АТФ – непосредственный источник при мышечной работе. Скорость расходования АТФ очень высокая. Запасы АТФ невелики. Вся АТФ не может быть затрачена при работе. Выполнение значительного объема работы возможно только при ресинтезе АТФ с той же скоростью, с какой она тратиться.

ПУТИ РЕСИНТЕЗА АТФ Процессы, обеспечивающие ресинтез АТФ принято делить на аэробные и анаэробные. К важнейшим анаэробным процессам относятся: - креатинфосфатная реакция - гликолиз Есть и другие, но их вклад в энергообеспечение мышечной работы незначителен.

ПОКАЗАТЕЛИ МЕХАНИЗМОВ ЭНЕРГООБЕСПЕЧЕНИЯ Для сравнения различных механизмов, оценки их возможностей используются следующие показатели: - Максимальная мощность - Скорость развертывания - Емкость - Эффективность

ПОКАЗАТЕЛИ Мощность – максимальное количество энергии, которое тот или иной процесс может дать в единицу времени (максимальное количество АТФ, которое может быть ресинтезировано в единицу времени). Скорость развертывания – время от начала работы до достижения процессом максимальной мощности.

ПОКАЗАТЕЛИ ЕМКОСТЬ - общее количество энергии, которое может поставить процесс для обеспечения работы ЭФФЕКТИВНОСТЬ – отношение энергии, используемой для ресинтеза АТФ, к общему количеству освободившейся энергии.

АЭРОБНЫЙ РЕСИНТЕЗ АТФ (аэробное биологическое окисление) Биологическое окисление бывает аэробным и анаэробным. АЭРОБНОЕ ОКИСЛЕНИЕ – основной путь ресинтеза АТФ, непрерывно действующий на протяжении всей жизни. Суть процесса --------------------

АЭРОБНЫЙ РЕСИНТЕЗ АТФ (Аэробное окисление) Окисление в организме заключается в отщеплении от окисляемого вещества водорода – раздельно 2 -х протонов и 2 -х электронов. Водород отщепляется ферментами НАД и ФАД. Носителями энергии при этом являются электроны. Для организма важно: - эффективно использовать энергию электронов - не допустить значительного повышения температуры.

АЭРОБНОЕ ОКИСЛЕНИЕ При аэробном окислении конечным акцептором водорода является кислород. Чтобы решить указанные ранее задачи НАД не передает протоны и электроны сразу кислороду. Они проходят через цепь промежуточных переносчиков (дыхательную цепь).

ЭНЕРГЕТИЧЕСКИЙ ЭФФЕКТ Энергетический эффект окисления связан с переносом электронов. На каждом этапе переноса они теряют часть энергии. В трех пунктах переноса освобождаются более значительные порции энергии: НАД ФАД, b c 1, аа 3 кислород. В этих трех пунктах освобождается энергия, которая может быть использована организмом для выполнения какой-либо работы. Но не непосредственно, а через АТФ.

Роль АТФ АТФ является непосредственным источником энергии для живых организмов. При расщеплении АТФ освобождается энергия: АТФ -- АДФ + Н 3 РО 4 + Энергия Только энергия, освобождающаяся при расщеплении АТФ, может использоваться живыми организмами для выполнения всех видов работ.

ЭНЕРГЕТИЧЕСКИЙ ЭФФЕКТ 1 Освобождающаяся в этих трех пунктах энергия используется на ресинтез АТФ по уравнению: АДФ + фосфорная кислота + Эн. = АТФ На другие процессы эта энергия использоваться не может. Перенос по дыхательной цепи пары водородов обеспечивает ресинтез 3 -х молекул АТФ. На это используется почти 60% освобождающейся энергии Энергия, не используемая на синтез АТФ, освобождается в виде тепла.

ЭНЕРГЕТИЧЕСКИЙ ЭФФЕКТ 2 В обычных условиях этого тепла как раз хватает для поддержания температуры тела. То есть полезно используется практически вся энергия. Но за счет тепла работу выполнить нельзя. При работе, когда процессы окисления ускоряются, тепла освобождается много и включается терморегуляция.

ЭНЕРГЕТИЧЕСКИЙ ЭФФЕКТ 3 Имеются косвенные данные, свидетельствующие о том, что у спортсменов экстра класса, специализирующихся в аэробных видах спорта, эффективность аэробного окисления выше. Перенос одной пары водорода может обеспечить ресинтез не 3, а 4 -х молекул АТФ.

СКОРОСТЬ АЭРОБНОГО ОКИСЛЕНИЯ Скорость аэробного окисления зависит от потребности в энергии, а точнее от концентрации АДФ. Но иногда эта связь нарушается.

СВОБОДНОЕ ОКИСЛЕНИЕ Свободное окисление – когда освобождающаяся при переносе электронов энергия не используется на ресинтез АТФ, а освобождается в виде тепла. Вместо 3 -х молекул АТФ может ресинтезироваться 2, 1 или даже ни одной.

РОЛЬ СВОБОДНОГО ОКИСЛЕНИЯ Свободное окисление может включаться: - при холодовом воздействии на организм - при необходимости устранить из организма (путем расщепления) какието нежелательные для него вещества. - при неблагоприятных изменениях в организме, вызванных мышечной работой или другими причинами.

РОЛЬ СВОБОДНОГО ОКИСЛЕНИЯ 2 При закаливании вырабатывается способность легко включать свободное окисление, чтобы противодействовать холодовому воздействию. Под влиянием систематической тренировки в видах спорта с большими энерготратами связь между окислением и ресинтезом АТФ становится более прочной, чтобы не снижалась эффективность процессов аэробного окисления.

ЛОКАЛИЗАЦИЯ АЭРОБНОГО ОКИСЛЕНИЯ Процесс аэробного окисления происходит внутри клеток в митохондриях. Количество митохондрий под влиянием систематической тренировки может увеличиваться.

Достоинства и недостатки аэробного ресинтеза АТФ ДОСТОИНСТВА: Наличие большого количества субстратов окисления (углеводы, жиры, белки). Удобные конечные продукты (СО 2 и Н 2 О), которые легко устраняются из организма. Высокая энергетическая эффективность: почти 60% освобождающейся энергии используется полезно на ресинтез АТФ.

НЕДОСТАТКИ 2 Низкая скорость развертывания и ограниченная мощность. Оба указанных недостатка аэробного пути ресинтеза АТФ связаны с возможностями потребления, транспорта и использования кислорода.

СКОРОСТЬ АЭРОБНЫХ ПРЕВРАЩЕНИЙ ЗАВИСИТ: - от потребности в энергии - от количества и активности ферментов от наличия субстратов окисления От поставки кислорода

ПОСТАВКА КИСЛОРОДА Возможности организма по доставке кислорода к работающим тканям и органам является главным фактором, ограничивающим аэробное энергообеспечение. Доставка кислорода к местам использования обеспечивается деятельностью дыхательной и ССС, системой крови. К доставке кислорода имеет отношение гемоглобин крови и миоглобин, содержащийся в тканях.

ВЛИЯНИЕ ТРЕНИРОВКИ Все органы и системы, обеспечивающие потребление, транспорт и использование кислорода подвержены влиянию тренировки – происходит их совершенствование. Это проявляется в повышении максимальной мощности аэробного пути ресинтеза АТФ. Скорость развертывания менее значимый показатель.

МАКСИМАЛЬНОЕ ПОТРЕБЛЕНИЕ КИСЛОРОДА (МПК) В качестве показателя уровня развития аэробного пути ресинтеза АТФ используется максимальное потребление кислорода – максимальное количество кислорода, которое может потребить и использовать тот или иной человек в единицу времени при выполнении интенсивной работы.

МПК Различают абсолютные и относительные значения МПК. В состоянии покоя потребление О 2 составляет 0, 3 -0, 4 л/мин. При выполнении интенсивной работы МПК увеличивается и может достигать 3 -4 -5 л/мин. Это абсолютные значения МПК.

ОТНОСИТЕЛЬНЫЕ ЗНАЧЕНИЯ МПК Если два человека имеют одинаковые значения МПК, на разную массу тела, у кого выше аэробные возможности? У того, у кого меньше масса тела. Поэтому более информативны относительные значения МПК – когда количество потребляемого кислорода (в мл) делится на массу тела (в кг).

ОТНОСИТЕЛЬНЫЕ ЗНАЧЕНИЯ МПК 2 Относительные значения МПК варьируют у разных людей (в зависимости от возраста, пола, состояния здоровья, уровня тренированности, спортивной специализации) от 20 до 85 мл/кг/мин и более.

ОТНОСИТЕЛЬНЫЕ ЗНАЧЕНИЯ МПК 3 Можно сказать, что емкость аэробного пути ресинтеза АТФ – безгранична. Работает на протяжении всей жизни без остановки. Но интересно не это, а сколько времени аэробный процесс может работать с максимальной или около максимальной мощностью.

УСЛОВИЯ ДОСТИЖЕНИЯ МПК МПК достигается при ЧСС 180190 уд/мин. При этих значениях ЧСС достигается максимальная сердечная производительность. Продолжительность работы должна быть не менее 2 минут.

ЕМКОСТЬ АЭРОБНОГО ПУТИ 2 Нетренированный человек на уровне МПК может работать 6 -8 минут. Спортсмен экстра класса представитель аэробных видов спорта – 30 -35 минут.

РОЛЬ АЭРОБНОГО ПУТИ ПРИ РАБОТЕ Основной механизм энергообеспечения при любой достаточно продолжительной работе. «Фоновый» механизм при работе переменной интенсивности. Обеспечивает энергией все восстановительные процессы.

АНАЭРОБНЫЕ ПУТИ РЕСИНТЕЗА АТФ Анаэробные процессы компенсируют недостатки аэробного: обладают высокой скоростью развертывания и высокой мощностью. Но имеют небольшую емкость. Они работают подобно аккумуляторам: «заряжаются» за счет аэробного процесса и в нужный момент отдают энергию.

Креатинфосфатный путь ресинтеза АТФ В клетках организма, кроме АТФ, имеется еще одно вещество с богатой энергией химической связью – креатинфосфат (Кр. Ф). Креатинфосфат может вступать в реакцию с АДФ: Кр. Ф + АДФ Кр + АТФ Этот механизм энергообеспечения называют также алактатным анаэробным

КРЕАТИНФОСФАТНАЯ РЕАКЦИЯ Это очень простой по химической природе механизм – всего одна реакция. Кр. Ф находится в клетке рядом с местами образования АДФ при работе. Благодаря этому креатинфосфатная реакция обладает уникальными характеристиками.

ВОЗМОЖНОСТИ Кр. Ф-реакции У нее наибольшая скорость развертывания: максимальной мощности достигает через 1 -3 секунды после начала интенсивной работы. Наибольшая мощность: максимальная мощность Кр. Ф -реакции в 3 -4 раза выше максимальной мощности аэробного пути ресинтеза АТФ и в 1, 5 -2 раза выше максимальной мощности гликолиза. Благодаря своим кникальным характеристикам креатинфосфатная реакция лежит в основе скоростно-силовых качеств. Главным недостатком является ограниченная емкость, зависящая от содержания креатинфосфатата.

ЕМКОСТЬ Кр. Ф-реакции Работать с максимальной интенсивностью можно 6 -8 секунд. Через 6 -8 секунд Кр. Ф снижается настолько, что скорость реакции замедляется и снижается интенсивность работы. Хорошо тренированные спортсмены (спринтеры) могут работать за счет этой реакции более продолжительное время. Время работы с максимальной интенсивностью используется для оценки емкости Кр. Ф – реакции.

ВЛИЯНИЕ ТРЕНИРОВКИ Под влиянием целенаправленной тренировки повышается скорость развертывания, мощность и емкость Кр. Ф – реакции. Особенно значительно можно повысить емкость. В основе этого лежит увеличение Кр. Ф, которое может повыситься в 1, 5 -2 раза.

РОЛЬ ПРИ МЫШЕЧНОЙ ДЕЯТЕЛЬНОСТИ Основной механизм энергообеспечения в упражнениях максимальной и близкой к максимальной мощности (спринтерский бег, упражнения со штангой). Обеспечивает энергией резкие изменения мощности по ходу работы.

ВОССТАНОВЛЕНИЕ КРЕАТИНФОСФАТА После завершения интенсивной работы запасы Кр. Ф восстанавливаются. Это происходит по уравнению: Кр + АТФ Кр. Ф + АДФ АТФ, используемая для ресинтеза Кр. Ф, образуется в ходе процессов аэробного окисления, для обеспечения которых требуется дополнительное количество кислорода. Запасы Кр. Ф могут восстановиться за 2 -5 минут. При значительном снижении их содержания – за более продолжительное время.

Кислородный долг Излишек кислорода, потребляемый в период восстановления после интенсивной работы сверх уровня покоя.

ГЛИКОЛИЗ Анаэробное расщепление гликогена или глюкозы до образования молочной кислоты (МК). За счет освобождающейся энергии ресинтезируется АТФ. Расщепление до молочной кислоты 1 молекулы глюкозы обеспечивает ресинтез 2 молекул АТФ, 1 глюкозного остатка гликогена – 3 молекул АТФ.

ГЛИКОЛИЗ Гликолиз по своим возможностям занимает промежуточное положение между Кр. Фреакцией и аэробным ресинтезом АТФ. Скорость развертывания гликолиза – 20 -40 секунд Мощность: в 1, 5 -2 раза выше максимальной мощности аэробного окисления и в 1, 5 -2 раза ниже мощности Кр. Ф-реакции. Оценить емкость гликолиза сложно, так как он один не может участвовать в энергообеспечении работы. По косвенным данным – гликолиз может дать в 5 -7 раз больше энергии, чем Кр. Ф-реакция.

ЕМКОСТЬ ГЛИКОЛИЗА Емкость гликолиза зависит: - от содержания гликогена в быстрых мышечных волокнах. - от устойчивости ферментов (и не только ферментов) к наполнению молочной кислоты и изменению р. Н - от емкости буферных систем - от волевых качеств.

РОЛЬ ГЛИКОЛИЗА Важнейший механизм энергообеспечения в упражнениях субмаксимальной мощности. Это упражнения продолжительностью от 30 до 3 -4 минут, при условии, что человек за все время выкладывается полностью. Участвует в энергообеспечении более кратковременных и продолжительных упражнений. Участвует в энергообеспечении упражнений, где присутствует статический режим деятельности мышц. Участвует в энергообеспечении повседневной деятельности.

ВЛИЯНИЕ МОЛОЧНОЙ КИСЛОТЫ НА ОРГАНИЗМ Сдвигает р. Н в кислую сторону. Из-за сдвига р. Н: - падает активность ферментов - изменяются свойства многих белков (в том числе сократительных). Вызывает осмотические явления – переход воды внутрь мышечных волокон. Происходит чрезмерное усиление дыхания, что требует дополнительных затрат энергии.

УСТРАНЕНИЕ МОЛОЧНОЙ КИСЛОТЫ Молочная кислота практически не устраняется в тех волокнах, где образуется, а поступает в кровь. Два основных пути: - использование в качества источника энергии (сердце и другие ткани) - ресинтез в гликоген (в печени). Ресинтез гликогена из молочной кислоты требует затрат энергии (в виде АТФ). Для ресинтеза этого АТФ требуется дополнительное количество кислорода. Этот кислород также включается в кислородный долг.

МИОКИНАЗНАЯ РЕАКЦИЯ АДФ + АДФ АТФ + АМФ Этот механизм называют реакцией крайней помощи. Может использоваться в самых крайних случаях. Емкость незначительна. Проявляет себя при необходимости устранить излишки АТФ и на начальных этапах мышечной работы. АМФ – стимулятор аэробного окисления.

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.
Креатинфосфатный путь связан с веществом креатинфосфатом. Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.
Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой. Данный путь ресинтеза АТФ иногда называют креатикиназным.
Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.
Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.
Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.
Время развертывания всего 1 – 2 сек.
Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются

· небольшое время развертывания,
· высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 л.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750 – 850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.
Время развертывания 20-30 секунд.
Время работы с максимальной мощностью – 2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

· он быстрее выходит на максимальную мощность,
· имеет более высокую величину максимальной мощности,
· не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки:
- процесс малоэкономичен,
- накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.
Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.
Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1 – 1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20 – 22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

Схематично процесс ресинтеза АТФ при работе можно выразить следующим уравнением:

АДФ + Н 3 РО 4 + энергия → АТФ + Н 2 О

Фосфорилирование АДФ неорганическим фосфатом в физиологических условиях требует затрат энергии в количестве около 9 ккал/моль АТФ. Нужное количество энергии может освобождаться в процессах двух типов: аэробных, требующих для своего протекания кислорода, и анаэробных, осуществляющих ресинтез АТФ без участия кислорода.

Прежде чем переходить к непосредственной характеристике различных путей ресинтеза АТФ, остановимся на показателях, позволяющих их сравнивать, оценивать возможности, достоинства и недостатки этих процессов. К таким показателям можно отнести максимальную мощность процесса, скорость его развертывания, метаболическую емкость и эффективность.

Максимальная мощность процесса ресинтеза АТФ оценивается наибольшим количеством энергии, которое тот или иной процесс может поставить для обеспечения ресинтеза АТФ в единицу времени (или количеством ресинтезируемой в единицу времени АТФ). Максимальную мощность принято выражать в калориях (кал), килокалориях (ккал), а также джоулях (Дж) или килоджоулях (кДж) в единицу времени (секунду или минуту) в расчете на кг массы тела человека.

Скорость развертывания процесса ресинтеза АТФ оценивается временем от начала работы до момента достижения этим процессом своей максимальной мощности. Она выражается в секундах или минутах.

Метаболическая емкость – суммарное количество энергии, которое может быть освобождено в ходе того или иного процесса и использовано на ресинтез АТФ. Выражается метаболическая емкость в килокалориях или килоДжоулях.

Эффективность процессов энергообеспечения определяется отношением полезно затраченной энергии (на ресинтез АТФ) к общему количеству энергии, освободившейся в ходе данного процесса. Чаще всего эффективность выражается в процентах.

Принято различать термодинамическую, метаболическую и механическую эффективность. Термодинамическая эффективность оценивается той долей энергии, освобождающейся при расщеплении АТФ, которая преобразуется в механическую работу. В соответствии с современными научными данными в механическую работу преобразуется 40-49% (0,4) энергии, освобождающейся при расщеплении АТФ.



Метаболическая эффективность показывает, какая часть освобождающейся в ходе химических превращений энергии, фиксируется в макроэргических фосфатных связях АТФ. В частности, в процессе аэробного окисления углеводов максимальная метаболическая эффективность составляет около 60% (0,6).

Механическая эффективность характеризует способность организма использовать энергию химических связей различных источников для обеспечения мышечной работы. Она рассчитывается как произведение термодинамической и метаболической эффективности. Так, непосредственно в механическую работу преобразуется примерно 25% (0,4 × 0,6 = 0,24) энергии, освобождающейся при аэробном расщеплении углеводов.

Основным процессом, осуществляющим ресинтез АТФ, является аэробное окисление , полностью обеспечивающее энергетические потребности организма в условиях повседневной деятельности. Аэробные превращения характеризуются большой метаболической емкостью. Общее количество энергии, которое может поставить для обеспечения мышечной работы аэробный процесс, многократно превосходит аналогичный показатель анаэробных превращений.

Основными энергетическими субстратами аэробных превращений служат углеводы и жиры, запасы которых в организме человека достаточно велики. Кроме того, в качестве источника энергии могут использоваться продукты белкового обмена. Таким образом, со стороны энергетических субстратов ограничений у аэробных превращений фактически нет. Однако при выполнении объемной, продолжительной мышечной работы могут возникнуть проблемы с доставкой энергетических субстратов к работающим органам и тканям (в первую очередь к мышцам) из депо.

В процессе аэробного окисления в организме не накапливаются промежуточные продукты энергетического обмена. Конечные продукты аэробных превращений (Н 2 О и СО 2) легко устраняются из организма.

Как уже указывалось, аэробный путь ресинтеза АТФ обладает высокой эффективностью. Непосредственно на ресинтез АТФ используется до 60% энергии, освобождающейся в ходе аэробных превращений (при отсутствии разобщения окисления с ресинтезом АТФ).

С другой стороны, аэробное окисление характеризуется низкой по сравнению с анаэробными превращениями скоростью развертывания и ограниченной максимальной мощностью. У нетренированных лиц аэробный ресинтез АТФ достигает своей максимальной интенсивности через 3-4 мин после начала напряженной мышечной работы. Систематическая тренировка сокращает это время. У лиц с высокой степенью тренированности, выполнивших предварительную разминку, аэробный процесс развертывается до максимума уже к концу первой минуты работы или чуть позже. Учитывая, что многие спортивные упражнения по своей продолжительности попадают в зону неполного развертывания аэробных процессов, такую скорость можно рассматривать как недостаточно высокую.

Даже при максимальной мощности аэробных превращений скорость ресинтеза АТФ остается относительно невысокой и не может обеспечить восполнение затрат АТФ при интенсивной работе. При наличии только аэробного механизма энергообеспечения организм не обладал бы способностью быстро переходить от состояния покоя к напряженной работе, быстро повышать мощность по ходу выполнения упражнения, выполнять кратковременные интенсивные упражнения скоростно-силового характера.

Анаэробные процессы ресинтеза АТФ как бы компенсируют недостатки аэробного пути. Они обладают значительно более высокой скоростью развертывания и максимальной мощностью, но существенно уступают аэробному процессу по метаболической емкости.

Существует три основных анаэробных процесса ресинтеза АТФ: креатинфосфокиназная реакция, гликолиз и миокиназная реакция. Во всех трех случаях ресинтез АТФ осуществляется путем взаимодействия АДФ с макроэргическими соединениями либо присутствующими в мышечной ткани (креатинфосфат и АДФ), либо образующимися в процессе анаэробных окислительных превращений углеводов (дифосфоглицериновая и фосфоэнолпировиноградная кислоты).

Рассмотрим последовательно каждый из трех основных анаэробных механизмов ресинтеза АТФ.

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.

Креатинфосфатный путь связан с веществом креатинфосфатом . Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.

Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой . Данный путь ресинтеза АТФ иногда называют креатикиназным.

Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.

Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. У мужчин выделение креатинина с мочой колеблется в пределах 18-32 мг/сутки . кг массы тела, а у женщин – 10-25 мг/сутки . кг (это иесть криатининовый коэффициент). Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.

Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.

Время развертывания всего 1 – 2 сек.

Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются:

    малое время развертывания (1-2 сек);

    высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 литров.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750-850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.

Время развертывания 20-30 секунд.

Время работы с максимальной мощностью – 2-3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

    он быстрее выходит на максимальную мощность;

    имеет более высокую величину максимальной мощности;

    не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки :

    процесс малоэкономичен;

    накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Общий итог гликолиза может быть представлен в виде следующих уравнений:

С 6 Н 12 О 6 + АДФ + 2 Н 3 РО 4 С 3 Н 6 О 3 + 2 АТФ + 2 Н 2 О;

глюкоза молочная кислота

n + 3 АДФ + 3 Н 3 РО 4 С 3 Н 6 О 3 + n _ 1 + 3 АТФ + 2 Н 2 О

гликоген молочная кислота

Схема анаэробного и аэробного гликолиза

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.

Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.

Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1-1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20-22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.